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A Nonlinear Fuel Optimal Reaction Jet Control Law 
Eric F. Breiffeller* and Lawrence C. Ngt 
Lawrence Livermore National Laboratory 

P.O. Box 808, L278, Livermore, CA 94551 

We derive a single-axis PWPT ACS that 
Abstract 

We derive a nonlinear fuel optimal attitude 
control system (ACS) that drives the final state to the 
desired state according to a cost function that weights 
the final state angular error relative to the angular 
rate error. Control is achieved by allowing the pulse- 
width-modulated (PWM) commands to begin and 
end anywhere within a control cycle, achieving a 
pulse width pulse time (PWPT) control. We show 
through a MATLAB@ Simulink model that this steady- 
state condition may be accomplished, in the absence 
of sensor noise or model uncertainties, with the 
theoretical minimum number of actuator cycles. The 
ability to analytically achieve near-zero drift rates is 
particularly important in applications such as station- 
keeping and sensor imaging. Consideration is also 
given to the fact that, for relatively small sensor and 
model errors, the controller requires significantly 
fewer actuator cycles to reach the final state error 
than a traditional proportional- integral-derivative 
(PID) controller. The optimal PWPT attitude 
controller may be applicable for a high performance 
kinetic energy kill vehicle. 

I 

Introduction 
In problems related to the attitude control of rigid 

bodies, it is often advantageous to design an attitude 
control system that is optimal in some way relative to 
a set of system constraints. Most ofien cited are 
constraints of time and fuel. A constraint pertinent to 
some systems regards the total number of PWM 
commands sent to the actuators. In our case that is 
represented by valve commands sent to the ACS jets. 
A PID controller is simple to implement (Wie I, 
1998), takes few CPU cycles, and usually is robust in 
most applications. Sliding mode controllers are 
likewise robust and easy to implement (Wertz 2, 

1978). Both of these control systems share a 
potential common trait, in an environment where 
sensor noise exists, of requesting numerous PWM 
commands while dithering about their phase-plane 
trajectories. These effects can be minimized by 
introducing deadbands and other nonlinear elements 
at the expense of system response and accuracy. 

minimizes the totainumber of valve commands 
while simultaneously minimizes a cost function 
dependent on the final state errors. We first apply the 
single-axis controller to a 1-DOF simulated system, 
and then to a 3-DOF system, where each axis is 
controlled by the single-axis controller. This allows 
us to evaluate its effectiveness in the presence of 
coupling through the inertia matrix. Phase-plane 
plots of angle versus angle rate are given as well as 
plots of the valve commands. Monte Carlo runs are 
made using Simulink in order to investigate 
controller sensitivities to gyro noise and camera 
noise. Published results (Garcia3, 1998) are shown in 
work done previously in support of MicroSat 
pointing and control development at LLNL. 

Pulse Width Modulation (PWM) 
An approximation to an idealized linear 

command may be represented as in Figure-1, and is 
shown to start at the beginning of the control cycle 
and to end within the control cycle, or it may 
continue into the next cycle if the command is 
saturated. 

Approximated 4 P ~ M f o r c e  

0 ton 

Figure-1: Ideal linear force command shown with 
PWM approximation 

A discrete approximation to the ideal jet turn on time 
request can be made as follows, 

Figure-;! illustrates a single-axis PWM control loop 
that provides feedback on error and error rate. 

I 
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Figure-2: Simplified single-axis controller 

Nonlinear Controller Derivation 
A continuous single-axis system may be 

described by, 

e = w  

where r is the jet control moment arm, 1, is the 
inertia term, and Fiel is the fixed-amplitude jet force. 
A discrete representation is given by, 

1 2  

2 
8, = 8 0  +wO-rA, - - - a s p  +a-p - (TACs  - t l )  

wT =w0 + a . p ,  (2) 

where TACS is the control cycle period, tl marks the 
beginning of the jet pulse, andp is the pulse width, p 
= t2 - tl , where, t2 marks the end of the pulse width. 

Figure-3 shows the states, e and u as a function of 
time for a jet pulse occurring over a particular time 
period, t, to t,. Note that the beginning of the pulse 
is not shown to coincide with the beginning of the 
control cycle, and it is this feature of both pulse width 
and pulse time that the nonlinear controller relies on 
to satisfy the two error criteria of A8 + 0, Am + 0, 

where A 0  = 0, -0, , Am = m, - mT and, 8, and 
wd are the desired end states. 

The cost function is defined as, 

which, as seen from Eq.-2, allows for two 
degrees of freedom, t, andp, in order to satisfy the 
two criteria of A e  4 0, Aw -+ 0. The parameter k 
defines the relative weighting between the position 
and rate error. Note that because of the PWPT 
solution must lie within the next ACS control 
interval, a constrained optimization of Eq. (3) is 
needed. 

Figure-3: Discrete state transition over one ACS 
control cycle as a function of jet pulse width and 
jet pulse temporal position within the control 
cycle. 

Referring to Figure-3, there are a total of five cases to 
be evaluated 

Case-1: tl 2 0 and t2  I TAa, where, p = t2 - tl 

Case-2: tl < 0 and t2 I TAcs * p =t2  

Am Case-4: - a I pmrnrmmpulse * Am 0, t ,  = 0 

Case-5: tl < 0 and t2 > TAcs, large angle saturation. 

The cost function of Case- 1 (depicted in Figure-3) 
is an unconstraint case and can be evaluated against 
t, andp in order to derive expressions for their 
optimal values as follows, 

aJ -=2-((8,-8,)-a-p=0 8, = e T ,  forpf0 ,  
at1 

so that, 

A 8  = - - a - p 2 + a . p . ( T A ,  - t , )  
1 
2 

(4) 

We next seek the optimal value of p by taking the 
derivative of J w.r.t. p. 
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Deterministic Scenario 

evaluate the performance of the single-axis 
controller. An integration routine with fixed step size 
of AT = ?4 m was used and the simulations were run 
for 10 seconds. Other parameters included a 
minimum valve command of ?4 ms, pitch angular 
acceleration a= 0.18 rad?, control cycle TAa  = 25 
ms, and cost function weighting factor k =  2.5 s2. A 
nonzero initial angle and angle rate was applied to the 
system which was required to drive the final states 
[Of @IT to [0 0IT. Figure-5 shows the jet valve 
commands and Figure-6 shows the corresponding 
closeup of the valve commands for the system once it 
has been captured in the small-angle mode. Figure-7 
illustrates the case transitions for the system in the 
small angle mode, Figure-8 shows the angle and 
angular rate errors, and the phase plane response is 
shown in Figure-9. 

A 1-DOF Simulink model was developed to 

n 

Figure-5: Jet valve commands for single-axis 
model 

Figure-6: Closeup of Figure-5 ("Small Angle") 
on/off commands corresponding to Cases-1,2,3,4 

Figure-7: Closeup of case transitions for the 
"Small Angle" modes of Figure-5 

10 

Figure-8: System state errors 

a 

. .  

Figure-9: Phase-plane response of system 

Stochastic Scenario 
In order to evaluate the controller in less than 

ideal conditions (e.g., model sensor noises) Monte 
Carlo runs (N=lOO) were made with respect to gyro 
(rate) noise and camera (angle) noise, and the results 
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are compared against the baseline scenario. The gyro 
noise was chosen as a zero-mean normal distribution, 
with standard deviations of either 5 0 p a d s  
(baseline), 1 Oopads, or 200pads, and the camera 
noise was chosen as a zero-mean normal distribution 
with standard deviations of either 1OOpad (baseline), 
200pad, or 300pad. Random draws were made on 
the initial states [e, 
N(Orad, (1 00mrad)2) and <a = N(Orads, 
(50mrads)'), where N(p,d) represents a normal 
distribution with mean p and standard deviation 0. 
The controller variables-of-interest are the final state 
errors ([A& Aa') and the total number of pulse 
commands (PMEDIAN, p - 4 .  Figure-9 shows the 
gyro sensitivity curves and Figure-10 shows the 
camera sensitivity curves (all results are summarized 
in Table-1 : Summary of Monte Carlo sensitivity 
studies). 

of each run such that 8, = 

From Figure-1 0 it is seen that the variations of the 
final angle error, due to gyro noise, decreased fiom a 
baseline value of 0.07mrud to 0.04mrad at maximum 
gyro noise due to the increased number of pulses 
(dithering due to increased noise). The angle rate 
error increased fiom a baseline value of 0.04 mrads  
to 0.32 mradsec at maximum gyro noise. The 
median and maximum number of pulses increased 
linearly where ~ M E D ~  varied .from a baseline value 
of 8pulses at 5 0 p a d s  to 98pulses at 200pads, and 
p ~ m  varied .from 29pulses to 152pulses. 

hoking at the variations due to camera noise, 
Figure-1 1 shows that the angle error is roughly flat 
with respect to camera noise, whereas the rate error 
significantly increases with camera noise. Both 
PWDM and fit well to a quadratic curve 
where p m ~ ~  increased fiom a baseline value of 
8pulses at 1 O O p a d  to 68pulses at 3 Wpad, and 
p- increased from 29pulses to 88pulses. 

Conclusions for the 1-DOF simulation can be 
summarized as follows: Assuming a noise-fiee 
environment and assuming that the controller is 
operating in the small-angle region (Cases-1 through 
4) it has been shown that the controller can take the 
system from an initial state to a final state in two or 
three pulses, depending on the initial point in angle- 
angle rate phase space. In an environment with noise 
present, the controller is least sensitive with respcet 
to the final angle error, and exhibits considerable 
sensitivities with respect to the final angle rate error 
and the number of pulses required. 

2w 1 

i 

loo Is0 am 
O Y A - 0  OVR-(0 

Figure-10: Monte Carlo 1-DOF sensitivities to 
gyro noise 

I I 
io0 i w  a00 160 YY) 

Three-Axis Monte Carlo Simulation 
Results 

A fully-coupled 3-DOF Simulink model was 
developed in order to evaluate the performance of the 
single-axis controller when applied to each of the 
three axes independently. Eq.-9 represents the 
dynamics and illustrates the cross-coupling effects 
that occur among axes. The inertia matrix was 
chosen to contain only moment-of-inertia terms, and 
six actuator jets were modeled as opposing pairs per 
axis. Other parameters remained the same as in the 
1-DOF simulation (e.g., minimum valve commands 
of 1 .O ms). The pitch angular acceleration, clpirch = 
0.18 rads', remained the same, and roll and yaw 
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angular accelerations were arbitrarily chosen as, 
= 0.22 rad/? and ai,uw = 0.20 rads'. 

- 1  
2 

fi = -- [a]. fi 

ul, = I" . (z - 6 x  ( I .  is)) 
(9) 

where, fi is the attitude quaternion defined as 

0 = [qsco,ur &w,or] , [Q] is a skew symmetric matrix 
comprised of elements of the angular rate vector, G , 
I is the inertia matrix and, Z is the applied jet 
torques. 

As in the I-DOF scenario, Monte Carlo runs 
(N=lOO) were made with respect to gyro noise and 
camera noise, and the results are compared against 
the baseline scenario. The gyro noise was chosen as 
zero-mean Gaussian, with standard deviations of 
either 50puds (baseline), lOOpuds, or 200puds 
and the camera noise was also chosen as zero-mean 
Gaussian with standard deviations of either 1 OOpud 
(baseline), 200pud, or 300pud. Random draws 
were made on the initial states [e, %IT of each run 
such that 8, = N(Orud, (100rnrug 2 ,  and a,, = 
N(Oruds, (50mrudss) 2 ) ,  and the controller was 
required to drive the angles and angular rates to zero. 

Figures-12 and -13 show the cumulative 
sensitivity results for gyro noise and camera noise, 
respectively. In this context, "cumulative", with 
respect to the angle errors and angular rate errors, is 
defined by the norm of the three-axis errors, whereas 
cumulative with respect to the number of pulses is 
defined by the sum of the three-axis pulses. The 
cumulative 3-DOF p m ~ ~  for the baseline scenario 
is 19puZses which, when compared to the 1-DOF 
system's baseline scenario of 8puZses, is slightly less 
than an ideal increase of a factor-of-three. Thus, it 
could be speculated that the coupling among axes is 
assumed to be responsible for the unexpected five 
fewer pulses in the 3-DOF system. Similarly, the 
cumulative 3-DOF pmIMuM for the baseline 
scenario is 63puZses which, when compared to the 1- 
DOF system's baseline scenario of 29puZses, is again 
below the ideal increase of a factor-of-three. A 
similarly consistent pattern holds for the 3-DOF 
angle and angular rate errors as in the I-DOF system. 

Figure-12: Monte Carlo 3-DOP cumulative 
sensitivities to gyro noise 

Figure-13: Monte Carlo 3-DOF cumulative 
sensitivities to camera noise 

In the 3-DOF system the angle errors and angular 
rate errors are roughly larger by a factor of & as 
compared to those in the I-DOF system. Table-1 
summarizes the results of the 1- and 3-DOF 
sensitivity studies for the nonlinear controller as well 
as results for a conventional PID controller (PID 
results are shown in parentheses). Similar higher- 
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Gyro 

Gyro 

Gyro 

Gyro 

Parameter Variable I 
Final 

(mrad) 
A*bl 
(mrads) 

(pulses) 

(pulses) 

PMEDIAN 

PMAXMUM 

98 (28) 

0.07 (0.14) 0.54 (0.15) 

19 (100) 277 (108) 

358 (136) 

Parameter Variable 1-DOF Baseline 1-DOF Max o h m  

0.08 (0.14) I I 2;s I I 0.07 (0.29) 

0.04 (0.09) 0.74 (0.05) 

Camera PMEDIAN 

I 0.07 (0.14) I 1.10 (0.14) I 
I 19 (100) I 204 (113) I 
I 63 (126) I 278 (146) I 

* 
Table-l-a,b: Summary of nonlinear controller Monte Carlo sensitivity studies ( PID controller results 

shown in parentheses) 

level patterns are seen in the 3-DOF and 1-DOF 
simulations, e.g., final angle errors decrease with 
increasing gyro noise due to dithering, angular rate 
errors increase quadratically for gyro and camera 
noise, median and maximum pulses are linear with 
respect to gyro noise and quadratic with respect to 
camera noise. 

Comparison of the Nonlinear and PID 
Controllers 

Several observations can be extracted fiom 
Table-1 regarding the relative performance of the 
nonlinear controller with a conventional PID 
controller (used in this paper as a benchmark for 
comparison purposes). The first observation is that 
the nonlinear controller performs better, with low 
noise sensors (baseline scenario), than the PID 
controller for all four metrics considered (Ae Fml , 
A c ~ ) F ~ ~ ~  , PMEDUN , p - ~ ) .  Therefore, for low 
noise applications (e.g., gyro noise = 50prad!, and 
camera noise = 1 OOprad), the nonlinear controller 
provides better state control with fewer pulses. This 
is expected since the nonlinear controller solves for 
precise solutions required to remove state errors. 
However, at higher sensor noise levels (e.g., gyro 

noise = 200prad/s, and camera noise = 3OOpad), 
only the fmal angular state error, AOFiaal , is smaller 
for the nonlinear controller. Conversely, when 
regarding the h a 1  angular rate error, A w F ~ ~  , and 
number of median and maximum actuator pulse 
commands, the PID controller shows superior 
performance in the high noise scenario (shown in 
italics in Tablesl-a,-b). 

Summary, Conclusions, and 
Recommendations 

It has been demonstrated that the optimal single- 
axis nonlinear controller, when applied to a noise- 
flee 1-DOF model, eliminates the initial state errors 
to within the tolerance of the minimum pulse width 
of the jets and the nonideality introduced by two 
constraints in the controller's derivation. The first 
constraint occurred in Case-2, where the cost 
function was evaluated by setting t',=O (which led to 
Eq.-6). The second constraint occurred in Case-4, 
where the minimum impulse of the jet forced us to 
solve the cubic equation by using Aa 0 (which led 
to Eq.-8). Irrespective of errors introduced by these 
variations on the ideal solution, the controller was 
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shown to require either two or three pulses to correct 
for initial errors, depending upon the initial phase- 
plane state. 

Monte Carlo runs were made using a 1-DOF 
model in order to observe the sensitivity of the 
controller to gyro and camera noise, from which it 
was concluded that final angle errors decrease with 
increasing gyro noise due to dithering and angular 
rate errors increase quadratically for gyro and camera 
noise. The median and maximum pulses increase 
linearly with respect to gyro noise, and increase 
quadratically with respect to camera noise. 

Monte Carlo runs were also made using a 3-DOF 
model in order to observe the sensitivity of the 
controller to gyro and camera noise, and to 
additionally observe how well the controller 
performed in the presence of a fully-coupled three- 
axis model. It was observed that the coupling among 
axes did not significantly change the characteristics 
of the controller’s response, i.e., it behaved similarly 
as in the 1-DOF model with a linear scaling effect 
created by the fact that there were now three axes. 

A comparison between the nonlinear controller 
and a conventional PID controller was made. It was 
concluded that the nonlinear controller performed 
better in a lower noise environment with respect to all 
four performance metrics, and also in the higher 
noise environment with respect to the final angular 
error. However, the PID controller performed better 
in a higher noise environment on three of the four 
metrics ( h a 1  angular rate error, and median and 
maximum number of pulses). The Monte Carlo 
simulations have demonstrated the usefulness of the 
nonlinear controller in an application where the 
sensor (and by extension the actuator) noise 
characteristics are below some overall system-level- 
dependent threshold. An example of this kind of 
application is the requirement for precision pointing 
and station-keeping of an exo-atmospheric satellite. 

One explanation for the seemingly poor 
performance of the PWPT controller, at very high 
angle and angular rate sensor noise, can be attributed 
to the fact that the cost function weighting factor, k, 
did not capture the full relationship between the 
sensor noise characteristics (i.e., sensor covariance 
matrix, R). The cost function could have been 
reformulated as, 

where, R = [  0 2 8 8  0 2 8 0  1. 
0 8 0  O m  

We believe with the above new formulation of the 
cost function, the performance of the PWPT 
controller will be improved significantly. 

It should be noted that this controller was derived 
to satisfjr the requirement of taking the system from 
an initial to a final point on the phase plane. Thus, 
the controller does not explicitly address the issue of 
tracking a moving target. However, a predictive 
filter could be implemented that supplies the 
controller with nonstationary endpoints at each 
control cycle, thereby allowing the controller to track 
a moving target. Further studies should be conducted 
to quantify, for this more general scenario (i-e., a 
moving target), the performance of the single-axis 
controller relative to a conventional controller (e.g., 
PID, sliding mode). 

Controller stability as a function of the weighting 
parameter, k (as shown in Eq.-3) should also be 
studied. We have not derived a Lyapanov-type 
stability proof. However, by inspection of Eq.-3 it is 
observed that the controller’s damping is directly 
related to the weighting parameter, k, and that as 
k+O the system becomes marginally stable. 
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